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Good ideas are often simple. When we meet one, we ask: why was this never
proposed before? So it is with Ockelford’s zygonic theory of music, presented
in Repetition in Music: Theoretical and Metatheoretical Perspectives.1 Its vivid
diagrams and lucid writing cast new glows and shadows on familiar music
and theory.

Reading the book, one is struck by the clarity of Ockelford’s vision and the
directness with which he pursues its goals. The theory goes like this: music is
judged aesthetically pleasing to the extent it is perceived as orderly. It is
perceived as orderly to the extent it seems to imitate itself; this impression of
orderliness intensifies to the extent the imitation coordinates between several
perceptual attributes simultaneously or occurs at multiple levels of structure.
Analysis finds and depicts the orderliness.2

Once familiar with Ockelford’s theory, one notices that the unflagging,
inevitable terms ‘repetition’, ‘equivalence’, ‘imitation’, ‘parallelism’, and in
some sense even ‘development’, ‘similarity’ and ‘coherence’ – though each
has its own set of contexts where its use is traditionally deemed appropriate –
can all be grouped under one rubric: zygonicity, which means perceived
orderliness arising from the perception of matched pairs. A zygon is a
matched pair: twins. Zygonicity varies in degree by categories (imperfect and
perfect) or on a quantitative continuum.

Ockelford’s theory applies so broadly that one initially wonders whether it
leaves room for any other theories. Yet, alas, its schematic nature makes it as
much a metatheory as a theory – hence ‘metatheoretical’ in the book’s title.
It builds on other theories because theories tend to model a specific
perceptual attribute (pitch, contour, harmony, timbre, etc.), which may itself
be a source of zygonicity. 

With this schematic model the analyst works at the pan-theoretic level; the
coherence of the music and the way the coherence arises are factored into
separate roles in analysis.3 To visualize this, Ockelford develops a simple but
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effective graphic notation.4 Its flexibility allows it to serve the analyst as a
pan-theoretic apparatus: it is used to depict any sort of zygonicity. Thus it is
compatible with any theory, or common knowledge, that defines trans-
formations or differentiates equivalence (or similarity) from non-equivalence
(or dissimilarity).5 One imagines zygonic theory could even be used in
support of other theories and analyses – indeed, its ability to interact with
other theories shows promise.

The book promotes a range of agendas. After a well-researched intro-
ductory chapter arguing for the pervasiveness and power of zygonicity,
Chapter 2 starts with a critique of Lewin’s work – of which more below – as a
prelude to presenting zygonic theory, its graphic notation and its implications
for cognition of aesthetic response to music. Chapter 3 analyzes Mozart’s K.
333. Chapter 4 views Schoenberg’s Op. 11, no. 1, critiquing Forte’s pc set
approach and Lewin’s transformational network approach to analysis; also
presented here are some innovative quantitative measures for atonal pc sets
and a list of preference rules for a ‘new model of music transformational
networks’. (It varies Lewin’s model to be more in line with a ‘populist’ mode of
cognition and perception, which I explain later in this review.) 

Zygonic analysis of Mozart and zygonicity in atonal music

The fire really starts crackling in Chapter 3, which asks: what makes a
Mozart sonata great? Two angles are considered: how the style and genre are
orderly and how Sonata K. 333 in particular is orderly. Here Ockelford makes
bona fide contributions to the vocabulary of music discourse and to the
technology of music analysis. With the graphing notation he illustrates
zygonicity (orderliness arising from matched pairs of events or relationships)
in ‘harmonic rhythmic pattern’ (HRP), ‘relative metric location’ (RML),
‘melodic function in harmonic structure’ (MF), ‘inter-onset ratios’ (IOR), and
in the more usual suspects like timbre, tempo, loudness, melodic contour and
harmony. 

Some of the observations are the sort a theory instructor would make in
the classroom to explain a parallel period or the development of a motive. Yet
zygonic analysis adds vital clarity, precision and flexibility to the enterprise.
The paper-and-pencil analyst should appreciate its visual clarity; the
computational musicologist should appreciate the precision it affords, so that
even the hardheaded music scientist should concede the role zygonicity must
play in listeners’ and composers’ cognition. The flexibility helps in two ways:
it permits systematic generalization of the passage, piece, genre and style, and
it provides the analyst with tools to reveal and depict orderly interplay
between features varying in subtlety from the mundane to the urbane.
Ockelford even coins a handy term, ‘syzygy’, for the situation in which two
perceptual attributes, such as rhythm and contour, coordinate to create
parallelism: the phenomenon is ubiquitous in classical music; it is about time
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we had a name for it – though Hanninen (1996, 2001, 2003) already
proposed ‘coincidence’ for the same phenomenon – and a corresponding
graphic notation, which Ockelford also provides.

Ockelford’s decisions do leave room for quibbling. The ‘melodic function’ of
accented non-chord tones (passing tones, suspension, neighbors) should not
always be called appoggiatura; if an umbrella category is needed, perhaps
‘chord member status’ is more suitable. Schenkerians will bark at Ockelford’s
neglect of voice-leading – and they would be half right – but zygonic analysis
could accommodate voice-leading considerations without much fuss so that’s
no grave concern.

Chapter 4 (‘Metatheory and Meta-analysis’) contrasts sharply with
previous chapters, partly because of the repertoire (Schoenberg) and partly
because it critiques Forte’s and Lewin’s theories. Ockelford is quite effective
here in explaining, sometimes with diagrams, the cognitive mechanisms
entailed by Forte’s pc set constructs such as complementation, aggregate
completion and the R1 similarity relation. His big target is the method and
meaning of Forte’s choice of pc sets in his analysis of the piano piece Op. 11,
no. 1. Ockelford questions how – and indeed whether – a listener could make
sense of its first 12 seconds (23 notes) by consciously or even subconsciously
registering the 28 principal sets, often imbricated, from among the 79
possible options. He supports his point, cogently, with a graph of possible
transitions between successive pitch events. If not aural, what significance do
Forte’s 28 principal sets hold? Ockelford builds a probabilistic argument, the
thrust of which is that large pc sets in general possess so much orderliness
automatically that finding orderliness by virtue of them – even in any
random bunch of notes – is virtually guaranteed! So is pc set analysis just
voodoo? No, but here is not the place to mount a defense of it. Let it be said,
however, that Ockelford’s is the most persuasive critique against Fortean pc
set analysis this reader has ever encountered.6 And it’s no cheap shot: far
from dodging the analysis of atonal music, Ockelford shows new ways of
revealing its structure.

The zygonicity measures he introduces in Chapter 4 are novel and useful –
one of the highlights of the book. These gauge various sorts of zygonicity
relating to pitch. How they differ from traditional pc set similarity relations is
not emphasized by Ockelford, but it is easy to articulate: (1) Four of the eight
zygonicity measures gauge the internal orderliness of a set rather than the
relation between sets; (2) the traditional similarity relations ignore pitch
recurrences, whereas all of Ockelford’s zygonicity measures consider each
pitch event: for instance the zygonicity of {0014}, a multiset of four pitch
events of which two are the same pitch, is higher than that of {014}, three
pitch events lacking repetition – {0014} is more zygonic, more orderly (see
note 8 on Morris’s (1998, 2003) exposition of multisets in music).
Traditional pc set similarity measures make no such distinction. An
unexpected consequence is that zygonicity measures promote pairs of the
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most generic segments (repeated C�s: <1111> and <111>) as having the
optimum orderliness, both internally and in relation to each other, even
though we might be inclined to ignore the relation between such segments as
motivically insignificant and thus trivial. Zygonicity looks from a new angle,
not to be confused with motivic significance or similarity. It is better to think
of these measures as gauging homogeneity. Four of the zygonicity measures
(zyg1, zyg1-seq, ZYG1 and ZYG1-SEQ) gauge pitch homogeneity; the other four
(zyg2, zyg2-seq, ZYG2 and ZYG2-SEQ) gauge intervallic homogeneity.

Unfortunately, the presentation of this fascinating material presents some
obstacles to the reader. The definitions of the zygonicity measures are not
precise enough, requiring the reader to engage in too much educated
guessing and testing. Also, instead of being presented in a cumulative order
or in one place, too many of them are scattered through the book in a
convoluted fashion. Variables are sometimes not identified; sometimes the
purpose of the measure is not described; other times the purpose is described
but the formula is not given. However, applying the basic principles of
combinatorics, the formulas and purposes of all of them can be pieced
together. So as a service to the reader, I present them in an appendix to this
review. 

Typos also impede comprehension. On p. 90 the primary ic vector for
{0,0,0,0} should be [6.000000] instead of [4.000000], because there are
six, not four, ways to choose pairs from four objects. In some of the formulas,
dots occur at the text baseline, looking like decimals (‘a.b’ on p. 72 and
‘#X.#Y’ on p. 85), where they should be raised (‘a • b’ and ‘#X • #Y’) to
indicate arithmetic multiplication.

In regard to atonal music theory, Ockelford could contextualize his work
more. For instance: zyg2 is, in purpose and operation, sufficiently distinct to
stand on its own, but readers interested in advancing this research might
appreciate knowing how zyg2 relates closely to Lewin’s probabilistic
applications of his own EMB function.7 Similarly, readers intrigued by
Ockelford’s ‘zygonic meta-analysis’ (p. 100) – a dual derivation: vertical and
horizontal – might appreciate its affinities to Lewin’s (1987: 204–6, 236)
‘product network’ model of parallel organum. The multiset aspect of
Ockelford’s zygonicity measures would be well served by reference to Morris’s
(1998, 2003) prior account of multisets in atonal voice-leading and 12-tone
composition.8 Though they originate independently, the resonance between
Ockelford’s ‘zygonic’ theory and Hanninen’s (1996, 2001) ‘associational’
segmentation theory is loud enough to earn more than a footnote.9

Ockelford on Lewin, and approaches to cognition and perception

In relation to Lewin’s work, the resonance rings more hollow. Like the
traditional theorist–analyst, Ockelford relies on introspection as a means of
verification, but he takes the cognitive–scientific approach by inviting

366 Psychology of Music 35(2)



empirical studies to test his model. Savvy to this distinction, he states that
because set theory and (Lewinian) transformations ‘present the widest diver-
gence from the cognitive-scientific approach’ they are chosen for interrogation
(critique) by zygonic theory (p. 68). The trouble is that his zygonic theory is
partly based on Lewin’s; this leads him – in his critiques of Lewin throughout
the book – to a soft regard for the true depth of Lewin’s divergence.

Observe that Ockelford maintains four unstated assumptions about
perception and cognition. When Ockelford segregates the ‘physical musical
spaces’ from the ‘perceived musical spaces’ (p. 12) in Lewin’s GIS theory, he
assumes that the listener is not trained to perceive in terms of frequency
ratio, sound wave shape, spectral components, attack envelopes or other
physical attributes. This segregation is proposed as an improvement upon
Lewin’s theory assuming that because people without specialized musical
training (non-specialists) far outnumber those with it (specialists), modeling
the cognition and perception of non-specialists is better. The proposal
assumes the primacy of non-specialists’ perception.

When Ockelford suggests that analysis avoid complex transformations we
can merely conceptualize in favor of structure we perceive when listening
(pp. 116–17), he assumes a crisp boundary and status distinction between
listening to music and other musical activities like playing, reading,
improvising, composing, analyzing, audiating, contemplating. It implies that
real-time listening has autonomy and primacy.

His statement (p. 138) that ‘a system of prioritization is evidently essential
to avoid mental overload, and it is proposed that this is achieved through the
principle of “least processing effort”’, which he earlier (p. 122) calls ‘the
principle of parsimony (“Ockham’s razor”), whereby it will seek the simplest
solution to make sense of incoming perceptual input’, suggests that for any
given piece or passage of music, there is a single way of hearing, listening or
cognizing it that is possible or desirable. It assumes that there is an exclusive
optimum hearing.

Ockelford also writes (p. 8) that ‘Lewin provides . . . musical spaces where
the relationship between intuition (based on perceptual experiences) and the
intellectually driven logic of mathematical structures appears to be pre-
carious to say the least’; therefore he then proposes ‘relationship’ instead of
‘interval’ because it is difficult to imagine intervals between such entities as
durations. Here Ockelford assumes that our powers of perception and
cognition of music are – and for purposes of theorizing they might as well
remain – basically fixed, immutable, unable or unwilling to learn duration
intervals. The cognitive–scientific approach may find comfort in these
assumptions (the exclusive optimum hearing of an immutable non-specialist
engaging only in real-time listening), but Lewin’s approach does not.

Clarke (1989) warns us to ‘mind the gap’ between disciplinary approaches
and Temperley (2001) urges that we distinguish between ‘descriptive’ and
‘suggestive’ theories and analyses. Certainly Ockelford proposes his theory
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and analyses as more ‘descriptive’ than ‘suggestive’. I want to couch this
distinction in a different way, one that emphasizes the cognitive–perceptual
component of theory and analysis. It will, I hope, reframe and reorient
Ockelford’s critique of Lewin: let me propose that we regard the noted
cognitive-scientific assumptions as ‘populist’, stressing uniformity, stability
and accessibility.10

In reviewing Korsyn’s Decentering Music (2004) for this journal, Margulis
(2005) suggests this ‘populist’ tendency of music cognition:

Music cognition tends to explore those aspects of musical experience that are
relatively robust and shared across large populations (betraying a dependence
on what Korsyn sees as the problematic construct of ‘normalcy’), rather than
those that are unique and more amenable to the committed introspection of a
single listener . . . Music analysts who rely on introspection as a methodology
might manifest a commitment to music as an individual experience, con-
structed as fully by the listener as by the composer and performer. This vision
elevates the specialist, and promotes the importance of training. Researchers
who rely on empirical methodologies might reveal a commitment to music as
more of a shared experience, with invariant features that characterize
the hearing of a neophyte as much as a person with decades of training.
(pp. 334–5)

In Rethinking Music (1999), Dubiel’s plea elaborates the music analyst-
theorist side, suggesting its rationale:

The crucial condition for any increase in musical knowledge is to keep yourself
ready to be struck by aspects of sound that you aren’t listening for, [so] the
value of analyses will ultimately be their value as ear-openers. The value of
theories will be in their facilitation of such analyses, and in their making
explicit the range of possibilities for what might be heard and the openness of
hearing to change. To make the point stick, I’ll allow myself this flashy way of
putting it: the reason to do theory is to protect yourself against believing too
much in any particular theory. (p. 274)

Rather than ‘populist’, the approach to perception and cognition Dubiel
endorses for the theorist–analyst is ‘progressive’. The ‘populist’ approach
asks: What modes of listening are universally shared? Whereas the ‘pro-
gressive’ approach asks: What modes of listening are possible?11 In simplistic
terms, the extremes are that the populist approach is more at home trying to
explain how or why almost everyone enjoys listening to Mozart’s music so
much, whereas the progressive approach is comfortable cultivating un-
charted regions of perception and cognition to enhance dedicated specialists’
multifaceted interactions with knotty Schoenberg or Stockhausen works. The
progressive approach implicitly rejects the assumptions, stated above, of the
populist approach.

Now, consider how populist assumptions sway Ockelford’s reading of
Lewin. In a passage from GMIT, Lewin models the interval from C4 to F�4
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with frequency ratios. Ockelford takes him to task for attempting to combine
abstract scientific concepts with psychological representations (p. 9). Lewin
can be interpreted in a different way, however.12 He is modeling the cognition
of the musicians or music scholars who are in the know about matters
quantitative. Lewin’s cognoscenti understand that simpler ratios correspond
to acoustical consonance whereas more complex ratios correspond to
acoustical dissonance. It is in this spirit that he proposes a quantitative model
for an intuited chain of intuitions relating F�4 to C4 through G3, D3, and F�3:
FQ(F�4) = 2(5–4)(3–4)(3–4)FQ(C4) = (45––32)FQ(C4). That is, Lewin provides exactly the
model needed if we wish to conceptualize the relationship between F�4 and
C4 in terms of acoustical consonance and dissonance. For Lewin’s
cognoscenti, the perceptual meaning of (45––32) is two-fold: (1) it is a relatively
complex ratio, thus not acoustically consonant, and (2) it corresponds to an
octave up (×2) from a major third up (×5–4) from a perfect fourth down (×3–4)
from a perfect fourth down (×3–4) from C4. Since this derivation is based on a
chain of harmonic intervals, it proposes an entirely different way of concep-
tualizing int(C4, F�4) than to say it is merely six semitones up. By formalizing
it, Lewin earns validity for it as a listening option, so we’re not chained to the
popular semitone-counting option.

Later, when Ockelford critiques the intermingling of ‘physical’ and ‘per-
ceived’ in Lewin’s theory, he suggests that ‘Generalized Interval Systems [GIS]
often seem to be better suited to physical musical spaces than their perceptual
corollaries’ (p. 12). GIS theory, however, is mathematical, not physical; since
we have grown more comfortable modeling physical spaces mathematically
than we have perceptual spaces, the mathematical nature of GIS theory
seems more germane to physical spaces. This distracts from appreciating the
value of mathematical modeling: it can describe and influence the perception
and cognition of trained composers, theorists, analysts, in ways that informal
discourse cannot.

Ockelford’s critique (p. 103) of Lewin’s RICH (retrograde-inversion-chain)
is too narrowly conceived.13 He overlooks what we gain from Lewin’s
discovery of RICH in Mozart’s symphony: when we notice RICHs in Webern’s
12-tone works, we can relate these conceptually to the RICHs in Mozart – a
lucrative inter-repertoire link that, incidentally, Ockelford’s zygonic theory
could model well. Abstractions like RICH push beyond the everyday
experience of repertoire that the ‘populist’ approach often assumes.

Lewin’s divergence widens around matters of ontology; even the broad
base of Ockelford’s theory just cannot straddle this divide. Ockelford asserts
that timbre space cannot form the basis of a GIS, since there is not ‘a unique t
in S which lies the interval i [away] from s’ (p. 15). A little bit of shoptalk
shows the flaw in that reasoning: The definition of the specific GIS guar-
antees there is such a ‘unique t’; every GIS must define ‘int’ as a function
such that any ordered pair (s, t) maps to some i in IVLS (the mathematical
group whose elements are asserted as the intervals for the given musical
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space). Thus it is by fiat, not by analogy with default perception, that the GIS
asserts some of its timbre intervals. This is what bothers Ockelford, or ought
to. Nevertheless, Slawson’s (1985) vowel-based sound color theory, which
Ockelford cites as a solution, actually suffers the same limitation:
perceptually each of Slawson’s timbre dimensions (openness, acuteness,
laxness and smallness) is linear, but, to use the standard 12-tone operators
(pitch-class transposition and inversion), Slawson (p. 73) wraps these linear
dimensions into cyclic spaces which do not model our default modes of
perceiving timbre.14 Like Lewin’s theory, it knowingly diverges from default
perception. (Nevertheless, Slawson (2005) has meanwhile reconfigured his
theory, entirely dispelling this concern.15 Moreover, much of Ockelford’s
unease about GIS-style mathematical modeling of timbre is met head-on by
Slawson in an extensive illuminating discussion of the differences and
similarities between pitch and sound color, their perception, phenomenology
and ontology in music and spoken language.) 

Similarly, Ockelford underestimates the degree to which GIS theory relies
on mathematical group theory for its consistency when he asserts that
‘harmony space – like timbre space – does not pass the test for a GIS’. It is well
known, mostly through the recent explosion of neo-Riemannian theory, that
many triadic chord transformations form mathematical groups, such as
PLR.16 Take any such group, call it IVLS, and there you have your GIS. That is
the only test a GIS must pass; it need not model perception at all.

The burden of perceptibility lies, rather, in the analytical application of a
GIS. In practice, a GIS-based analysis explains how it models some aspect of
our perception in the specific passage analyzed. Often GIS-based analysis tries
to formalize not perception in general, but rather an intuition about perception
that is specific to the individual passage analyzed. Thus it cultivates modes of
perceiving or conceptualizing the musical passage that promote its
individuality. This is particularly the case when an analysis makes use of a
non-commutative GIS (one in which successive transpositions may produce
different results when applied in a different order). Non-commutative GISs go
unmentioned by Ockelford. Transpositions in a non-commutative GIS do not
behave at all like transpositions we generally intuit. A good example is
Lewin’s (1995) analysis of Schoenberg’s String Trio, m. 1, where the pitches
of a G minor triad trill with those of a B major triad. Lewin wishes to capture
two intuitions: (1) the relevant transformational action is oscillation, and (2)
the connection of each instrument’s trill to that in the next pair of triads (A
minor and D� major) neither subordinates, nor is subordinated by, its
(vertical) connection to the simultaneous trills in the other instruments.

To model the first intuition Lewin employs a GIS in which half of the
transposition operations are oscillations (involutions in mathematical
parlance). For instance X1(C) = C�, but also X1(C�) = C, thus X1(X1(C)) = C.
This is not your garden-variety transposition. The GIS is non-commutative
because for instance doing transposition X1 before doing transposition Y2
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produces a different pitch than doing X1 after doing Y2; in particular
Y2(X1(C)) = Y2(C�) = B whereas, topsy-turvy, X1(Y2(C)) = X1(D) = D�.
Rather than modeling the perception of transposition in general, trans-
position operation X1 models perceptions arising from the idiosyncrasies of
the passage – made of trills between pitches of triads. The oscillating
transposition operations of the non-commutative GIS make sense of the
passage in a way that conventional transposition operations do not.

To model the second intuition, Lewin employs a dual-GIS product network: a
joint derivation (one vertical-harmonic, the other horizontal-melodic) that
‘dehierarchizes’ the two perspectives. The product network actually requires
non-commutative GISs, so Lewin not only models each of the two intuitions
but also models their interdependence – Lewin’s analysis is perhaps fanciful,
but without a doubt it is also insightful. The point is, analyses like this one use
the idiosyncrasies of the piece of music as an opportunity to challenge us to
expand our concept – and accordingly try to expand our perception – of what
intervals, harmonies and melodies are, protecting us from the complacency
of ‘believing too much in any particular theory’ of what they are. And all this
is done to keep our powers of perception and cognition flexible, so they may
even progress.

The potential progress of music perception and cognition is not the focus
of Ockelford’s book. Its final chapter (‘Cognition and Metacognition’),
however, certainly invites consideration of these thorny concerns, as it pro-
poses continuums of perception, cognition, conceptualization and conscious
versus subconscious processing. Ockelford shows how zygonic theory
contributes to an impressively nuanced view of these. Perhaps the zygonic
treatment of cognition and metacognition could accommodate motion along
these continuums, corresponding to the progressive spirit of Lewin’s theory
and analyses. As for zygonic analysis, I find it hard to accept that it only
applies in the ‘populist’ approach to perception and cognition. Why not in the
‘progressive’ approach as well? Lewin’s GIS theory – though highly flexible –
does not lean comfortably in the ‘populist’ direction; the schematic nature of
zygonic theory’s analytic apparatus, however, makes it compatible with both
‘populist’ and ‘progressive’ approaches to cognition and perception.

Critiques and counter-critiques aside, Ockelford’s zygonic theory is a good
idea, and original too. It provokes thought in myriad directions, which could
stimulate research, both ‘populist’ and ‘progressive’. Ockelford’s Repetition in
Music is recommended especially to the broad spectrum of theorist-analysts
and cognitive-scientific researchers.

N O T E S

1. Zygonic theory was previously presented by Ockelford (1991, 1999, 2004).
2. Ockelford’s work comports well with several influential music theories including

Schenker’s theory of tonality, and Schoenberg’s Grundgestalt and Developing
Variation theories.
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3. It is similar to Hanninen’s (1996, 2001) approach. 
4. Hanninen presents a notation for ‘association graphs’, but it is less schematic and

thus somewhat less flexible than Ockelford’s. Ockelford cites Lewin and
Fauconnier as forerunners of his approach. 

5. See note 2 regarding other theories.
6. This is not to say the critique dissuades me. Responding to Ockelford’s critique, a

defense of pc set analysis could go in one or both of two directions: (1) Forte’s
imbrication method of pc set segmentation may enhance exploratory non-real-
time interactions with the music, which indirectly enhance real-time listening;
(2) the power of pc set analysis is demonstrated by Hasty (1981), Hanninen
(1996, 2001) and others, who have developed approaches to segmentation that
are more flexible and listener-sensitive than Forte’s imbrication method.

7. See Lewin (1987: 106–11). Morris (1987: 70, 328, ff21) presents a related
multiplicity function (MUL) and discusses earlier related work by Lewin.

8. Morris (1998: 206–7) explains multisets as a way to formalize the regulation of
pc doubling in atonal voice-leading networks. Morris (2003) surveys the diversity
of non-ornamental pc duplication in traditional 12-tone music and in later
developments such as rotational arrays (Stravinsky, Wuorinen), cyclic sets (Perle)
and super- and weighted-arrays (Babbitt, Swift and Morris). He then develops a
compositional model by defining equivalence classes of dmosaics (double mosaics)
which are classes of partitions of a double aggregate of 2×12 pc instances.

9. Hanninen’s theory of segmentation and associative organization employs sonic,
structural and contextual criteria to choose phenosegments from among
genosegments. (The terms ‘sonic’, ‘structural’ and ‘contextual’ have specific
technical definitions in Hanninen’s theory.) These three types of criteria play a
role in Hanninen’s theory similar to that played by ‘perspects’ in Ockelford’s
theory. Ockelford’s model shares much with Hanninen’s: both focus on
identifying which repetitions, or parallelisms, are structurally significant, and to
achieve this end both consider myriad facets. Those drawn to either Ockelford’s or
Haninnen’s theory should seek out the other.

10. The reader is urged not to infer the motivations or connotations of political
populism.

11. Margulis (p. 334) characterizes the listening modes this way.
12. Lewin (1969, 1986) thoroughly conveys his approach to analysis and

perception.
13. On a technical note: Ockelford’s assertion, in Figure 64, that ‘any series of

regularly transposed intervals incidentally forms a chain of retrograde
inversions’ is not true. The example given produces RICH only because the first
and last intervals of the transposed series are the only intervals, since the
transposed segment is only three notes long. RICH is not guaranteed if, for
instance, a segment four notes long is transposed regularly. 

14. Slawson does this by locating 12 vowel sounds (ee-eh-ae-aa-ah-aw-oo-uu-ue-oe-
yy-ii-ee) in a circular formation on the two-dimensional plane created by the
orthogonal arrangement of two of the linear timbre dimensions: open vs. closed
and acute vs. grave. Thereby, the mathematical isomorphism of color-class
intervals to pitch-class intervals is upheld by perception of near and far all the
way around the color-class circle.

15. See Sandell (1990: 259) on this point.
16. See Cohn (1998) and the entire issue 42(2) of the Journal of Music Theory devoted

to neo-Riemannian theory. For the PLR-group specifically, see Hyer (1995).
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Appendix

INTERNAL ZYGONICITY MEASURES

Not order-sensitive: Let X be an unordered multiset of pitches.

Answers the question: Formula:

zyg1 For a set of pitch events, what are the chances 
that any two, chosen at random, will be the 
same pitch? 

zyg2 For a set of pitch events, what are the chances 
any pair of its dyads, chosen at random, will be 
interval class equivalent? 

Order-sensitive: for xi ∈ X, where X is an ordered pitch segment.

zyg1-seq For an ordered segment of pitch events, what 
are the chances that any two consecutive pitch 
events, chosen at random, will be the same pitch?

zyg2-seq For an ordered segment of pitch events, what are
the chances that any consecutive (overlapping) 
pair of its consecutive-pitch dyads, chosen at 
random, will be interval class equivalent?

 

DEF 1: Pairs(X) = The unordered pairs of elements of X: {(x1, x2) | x1  X & x2  X } 

 

#Pairs(X) = cardinality (size) of Pairs(X)  = 
# X

2

# X!

(2!)(# X! 2!)
 

 

DEF 2: Z(X) = The pairs of identical elements of X: {(x1, x2)  Pairs(X) | x1 = x2 } 

 

DEF 3: function Eq(x1, x2) = 
1 x1 x2

0 x1 x2

 

 

#Z(X) = The number of matching pairs in X = Eq(x1,  x2)
x1, x2 X

 

 

DEF 4: IC(x1, x2) = The interval class of pitch dyad (x1, x2) 

# Z(X)

# Pairs(X)
 

Eq(IC(x1, x2),
x1,x 2,x3,x 4 X

 IC(x3, x4 ))

# (Pairs( Pairs( X)))
 

Eq(xi 1,xi)
i 2

# X

# X 1
 

Eq(IC(xi 1,xi)
i 2

# X 1

,IC(xi,xi 1))

# X 2
 

DEF 5: Pairs(X,Y) = The unordered pairs from X and Y: {(x, y) | x  X & y  Y } 

 

#Pairs(X,Y) = cardinality of Pairs(X,Y) =  (#X)(#Y) 

 

DEF 6: Z(X,Y) = The pairs of identical elements in X and Y: {(x, y)  Pairs(X,Y) | x = y } 

 

#Z(X,Y) = The number of matching pairs from X and Y = Eq(x, y)
x X ,y Y

 



RELATIONAL ZYGONICITY MEASURES

Not order-sensitive: Let X and Y be unordered multisets of pitches.

ZYG1 For two sets of pitch events, what are the 
chances that any two, chosen randomly one 
from each set, will be the same pitch?

ZYG2 For two sets of pitch events, of all the pairs of
dyads formed by pairing a dyad from one set 
with a dyad from the other set, what proportion 
of these pairs of dyads would be interval class 
equivalent?

Order-sensitive: for xi ∈ X, yi ∈ Y, where X and Y are ordered
pitch segments the same length.

ZYG1-SEQ For two ordered pitch segments the same length,
what proportion of order positions put identical
pitches in both segments?

ZYG2-SEQ For two ordered pitch segments the same length,
of all the pairs of consecutive-pitch dyads 
formed by pairing a consecutive-pitch dyad from
one segment with a consecutive-pitch dyad 
spanning the same order positions in the other
segment, what proportion of said pairs of dyads
would be interval class equivalent?
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# Z(X,Y)

# Pairs(X,Y)

Eq(IC(x1,x2),
x1,x 2 X ,y1, y2 Y

 IC(y1,y2))

# (Pairs( Pairs( X,Y )))
 

Eq(xi,yi)
i 1

# X

# X
 

Eq(IC(xi 1,xi)
i 2

# X

,IC(yi 1,yi))

# X 1
 




